Evidence for multiple alleles at the DGAT1 locus better explains a quantitative trait locus with major effect on milk fat content in cattle.
نویسندگان
چکیده
A quantitative trait locus (QTL) for milk fat percentage has been mapped consistently to the centromeric region of bovine chromosome 14 (BTA14). Two independent studies have identified the nonconservative mutation K232A in the acylCoA-diacylglycerol-acyltransferase 1 (DGAT1) gene as likely to be causal for the observed variation. Here we provide evidence for additional genetic variability at the same QTL that is associated with milk fat percentage variation within the German Holstein population. Namely, we show that alleles of the DGAT1 promoter derived from the variable number of tandem repeat (VNTR) polymorphism are associated with milk fat content in animals homozygous for the allele 232A at DGAT1. Our results present another example for more than two trait-associated alleles being involved in a major gene effect on a quantitative trait. The segregation of multiple alleles affecting milk production traits at the QTL on BTA14 has to be considered whenever marker-assisted selection programs are implemented in dairy cattle. Due to the presence of a potential transcription factor binding site in the 18mer element of the VNTR, the variation in the number of tandem repeats of the 18mer element might be causal for the variability in the transcription level of the DGAT1 gene.
منابع مشابه
Positional candidate cloning of a QTL in dairy cattle: identification of a missense mutation in the bovine DGAT1 gene with major effect on milk yield and composition.
We recently mapped a quantitative trait locus (QTL) with a major effect on milk composition--particularly fat content--to the centromeric end of bovine chromosome 14. We subsequently exploited linkage disequilibrium to refine the map position of this QTL to a 3-cM chromosome interval bounded by microsatellite markers BULGE13 and BULGE09. We herein report the positional candidate cloning of this...
متن کاملAssociation of a lysine-232/alanine polymorphism in a bovine gene encoding acyl-CoA:diacylglycerol acyltransferase (DGAT1) with variation at a quantitative trait locus for milk fat content.
DGAT1 encodes diacylglycerol O-acyltransferase (EC ), a microsomal enzyme that catalyzes the final step of triglyceride synthesis. It became a functional candidate gene for lactation traits after studies indicated that mice lacking both copies of DGAT1 are completely devoid of milk secretion, most likely because of deficient triglyceride synthesis in the mammary gland. Our mapping studies place...
متن کاملEffects of DGAT1 variants on milk production traits in German cattle breeds.
Various QTL mapping experiments led to the detection of a QTL in the centromeric region of cattle chromosome 14 that had a major effect on the fat content of milk. Recently, the gene encoding diacylglycerol O-acyltransferase (DGAT1) was proposed to be a positional and functional candidate for this trait. This study investigated the effects of a nonconservative lysine to alanine (K232A) substitu...
متن کاملAlleles of the bovine DGAT1 variable number of tandem repeat associated with a milk fat QTL at chromosome 14 can stimulate gene expression.
A quantitative trait locus (QTL) affecting milk fat percentage has been mapped to the centromeric end of the bovine chromosome 14 (BTA14). This genomic area includes the DGAT1 gene, which encodes acyl-CoA:diacylglycerol acyltransferase 1, the key enzyme of triglyceride biosynthesis. Genetic and biochemical studies led to the identification of the nonconservative DGAT1-K232A polymorphism as a ca...
متن کاملGenetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition.
We recently used a positional cloning approach to identify a nonconservative lysine to alanine substitution (K232A) in the bovine DGAT1 gene that was proposed to be the causative quantitative trait nucleotide underlying a quantitative trait locus (QTL) affecting milk fat composition, previously mapped to the centromeric end of bovine chromosome 14. We herein generate genetic and functional data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 167 4 شماره
صفحات -
تاریخ انتشار 2004